A4402
Constant On-Time Buck Converter
With Integrated Linear Regulator
Application Information
V OUT + V f + ( R S × I OUT )
D =
V OUT + V f + ( R S × I OUT ) (16)
V IN + V f + ( R S × I OUT ) – ( R DS × I OUT )
t ON =
( t ON – 60 × 10 –9 ) × V IN
SwitcherOn-TimeandSwitchingFrequency Inorderfor
the switcher to maintain regulation, the energy that is transferred
to the inductor during the on-time must be transferred to the out-
put capacitor during the off-time. This relationship must be main-
tained for stable operation and governs the fundamental operation
of a switching regulator. Each component along the current path
changes the voltage across the inductor and therefore the energy
that is transferred during each cycle. Summing the voltage from
V IN  to V OUT during each cycle gives a relationship of the voltage
across the inductor during the on-time and during the off-time.
These terms are represented as V ON  and V OFF .
Given a target operating frequency, represent t ON as:
t ON = T × D (10)
where T equals 1 / f SW , and D is the duty cycle.
Duty cycle can be represented as the voltage across the inductor
during the off-time, divided by the total voltage of the off-time
and on-time:
D = V OFF / ( V OFF + V ON ) (11)
Next, determine the voltage drops during the on cycle and the
off cycle. Figure 2 shows the current path during the on-time and
off-time.
Creating voltage summation during each cycle will give equa-
tions to represent V ON  and V OFF :
V ON = V IN – V OUT – ( I OUT × R L ) – ( R DS × I OUT ) (12)
V OUT + V f + ( R S × I OUT ) + (15)
V IN – V OUT – ( R DS × I OUT )
Further simplification and grouping of terms yields:
D =
Substitute this simplified expression for duty cycle back into
equation 10. The following formula results in the on-time, given
a target switching frequency:
1 V OUT + V f + ( R S × I OUT ) (17)
f SW V IN + V f + ( R S × I OUT ) – ( R DS × I OUT )
The formulas above describe how t ON changes based on input and
load conditions. Because load changes are minimal, and the out-
put voltage is fixed, the dominant factor that effects on-time is the
input voltage. The converter is able to maintain a constant period
over a varying supply voltage because the on-time is proportional
to the input voltage. The current into the TON terminal is derived
from a resistor tied to VIN1, which sets the on-time proportional 
to the supply voltage. Selecting the resistor value, based on the
t ON calculated above, is done using the following formula:
R TON = (18)
3.12 × 10 –12
After the resistor is selected and a suitable t ON is found, it must
be demonstrated that t ON does not, under worst-case conditions,
V OFF = V OUT + ( I OUT × R L ) + V f + ( R S × I OUT )
(13)
V OUT × ( I OUT × R L ) + V f + ( R S × I OUT )
D =
LX
Now substituting V ON  and V OFF intoequation11givesacom-
plete formula for duty cycle as it relates to the voltage across the
inductor:
V OUT + ( I OUT × R L ) + V f + ( R S × I OUT ) + (14)
V IN – V OUT – ( I OUT × R L ) – ( R DS + I OUT )
VIN1
A4402
V RL Current path (on-cycle)
L1
V f V RL
Current path
V RS (off-cycle)
R LOAD
The effects of the voltage drop across the inductor resistance and
trace resistance do have an effect on the switching frequency.
However, the frequency variation due to these factors is small
and is covered in the variation of the switcher period, T SW , which
is ±25% of the target. Removing these current-dependent terms 
simplifies the equation:
Star Ground
Figure 2. Current limiting during overload
Allegro MicroSystems, LLC
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com
11
相关PDF资料
APP-001-15AMP PLUG AUTO PWR BLACK W/LED 15AMP
APP-001-20AMP AUTO PLUG 12VOLT WITH 20AMP FUSE
APP-001-VO PLUG AUTO PWR BLACK W/LED IND
APP-001 PLUG AUTO PWR BLACK W/LED IND
APP-002 PLUG AUTO PWR GRAY W/LED IND
APP-003 PLUG AUTO PWR BLACK W/O LED IND
APP-004 PLUG AUTO PWR GREY
ARD00386 BOARD MCP1640 2CELL BOOST CONV
相关代理商/技术参数
APEK4403GEU-01-T 制造商:Allegro MicroSystems 功能描述:PRODUCT EVALUATION KIT
APEK4403GEU-01-T-DK 功能描述:BOARD EVAL FOR A4403 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:- 标准包装:1 系列:- 主要目的:DC/DC,步降 输出及类型:1,非隔离 功率 - 输出:- 输出电压:3.3V 电流 - 输出:3A 输入电压:4.5 V ~ 28 V 稳压器拓扑结构:降压 频率 - 开关:250kHz 板类型:完全填充 已供物品:板 已用 IC / 零件:L7981 其它名称:497-12113STEVAL-ISA094V1-ND
APEK4447SLJ-01-T-DK 功能描述:A4447 - DC/DC, Step Down 1, Non-Isolated Outputs Evaluation Board 制造商:allegro microsystems, llc 系列:- 零件状态:有效 主要用途:DC/DC,步降 输出和类型:1,非隔离 功率 - 输出:- 电压 - 输出:0.8 V ~ 24 V 电流 - 输出:2A 电压 - 输入:8 V ~ 50 V 稳压器拓扑:降压 频率 - 开关:- 板类型:完全填充 所含物品:板 使用的 IC/零件:A4447 标准包装:1
APEK4490EES-01-T-DK 功能描述:BOARD EVAL FOR A4490 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:- 标准包装:1 系列:- 主要目的:DC/DC,步降 输出及类型:1,非隔离 功率 - 输出:- 输出电压:3.3V 电流 - 输出:3A 输入电压:4.5 V ~ 28 V 稳压器拓扑结构:降压 频率 - 开关:250kHz 板类型:完全填充 已供物品:板 已用 IC / 零件:L7981 其它名称:497-12113STEVAL-ISA094V1-ND
APEK4491EES-01-T-DK 功能描述:A4491 - DC/DC, Step Down 3, Non-Isolated Outputs Evaluation Board 制造商:allegro microsystems, llc 系列:- 零件状态:有效 主要用途:DC/DC,步降 输出和类型:3,非隔离 功率 - 输出:- 电压 - 输出:- 电流 - 输出:- 电压 - 输入:4.5 V ~ 23 V 稳压器拓扑:降压 频率 - 开关:550kHz 板类型:完全填充 所含物品:板 使用的 IC/零件:A4491 标准包装:1
APEK4900KLQ-01-T-DK 功能描述:A4900 - Power Management, Half H-Bridge Driver (External FET) Evaluation Board 制造商:allegro microsystems, llc 系列:- 零件状态:过期 主要用途:电源管理,半 H 桥驱动器(外部 FET) 嵌入式:- 使用的 IC/零件:A4900 主要属性:3 个半 H 桥驱动器 辅助属性:- 所含物品:板 标准包装:1
APEK4910KJP-01-T-DK 功能描述:A4910 - Power Management, Half H-Bridge Driver (External FET) Evaluation Board 制造商:allegro microsystems, llc 系列:- 零件状态:有效 主要用途:电源管理,半 H 桥驱动器(外部 FET) 嵌入式:- 使用的 IC/零件:A4910 主要属性:3 个半 H 桥驱动器 辅助属性:- 所含物品:板 标准包装:1
APEK4915MET-01-T DK 制造商:Allegro MicroSystems LLC 功能描述:BOARD DEMO FOR 4915